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ABSTRACT
Motion sensors (e.g., accelerometers) on smartphones have

been demonstrated to be a powerful side channel for attack-
ers to spy on users’ inputs on touchscreen. In this paper, we
reveal another motion accelerometer-based attack which is
particularly serious: when a person takes the metro, a ma-
licious application on her smartphone can easily use accel-
erator readings to trace her. We first propose a basic attack
that can automatically extract metro-related data from a large
amount of mixed accelerator readings, and then use an en-
semble interval classier built from supervised learning toin-
fer the riding intervals of the user. While this attack is very
effective, the supervised learning part requires the attacker to
collect labeled training data for each station interval, which
is a significant amount of effort. To improve the efficiency
of our attack, we further propose a semi-supervised learning
approach, which only requires the attacker to collect labeled
data for a very small number of station intervals with obvi-
ous characteristics. We conduct real experiments on a metro
line in a major city. The results show that the inferring ac-
curacy could reach 89% and 92% if the user takes the metro
for 4 and 6 stations, respectively.
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1. INTRODUCTION
Sensor-rich mobile devices such as smartphones and

tablets have become ubiquitous. Ever-expanding users
carry them everywhere. High-quality sensors (e.g., cam-
era, GPS and accelerometer) on these devices continu-
ously sense people-centric data and have helped devel-
opers create a wide range of novel applications. How-
ever, once these sensors are hijacked by malware, they
may seriously threaten the user privacy. For instance,
Templeman et al. [1] recently introduce a visual mal-
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ware that can exploit cameras on smartphones to con-
struct rich, three dimensional models of users’ homes
or offices. Owusu et al. [2] find that accelerometers
could be utilized to eavesdrop passwords that users in-
put through touch screens.
While a good number of sensor-based threats have al-

ready been identified, this paper reveals a new one that
is particularly serious. In brief, we find that if a person
with a smartphone takes the metro, a malicious applica-
tion on her smartphone can use the accelerometer read-
ings to trace her, i.e., infer where she gets on and off
the train. The cause is that metro trains run on tracks,
making their motion patterns distinguishable from cars
or buses running on ordinary roads. Moreover, due to
the fact that there are no two pairs of neighboring sta-
tions whose connecting tracks are exactly the same in
the real world, the motion patterns of the train within
different intervals are distinguishable as well. Thus, it is
possible that the running of a train between two neigh-
boring stations produces a distinctive fingerprint in the
readings of 3-axis accelerometer of the mobile device,
leveraging which attackers can infer the riding trace of
a passenger.
We believe this finding is especially threatening

for three reasons. First, current mobile platforms such
as Andorid allow applications to access accelerometer
without requiring any special privileges or explicit user
consent, which means it is extremely easy for attack-
ers to create stealthy malware to eavesdrop on the ac-
celerometer. Second, metro is the preferred transporta-
tion mean for most people in major cities. For exam-
ple, according to the Wikipedia, the daily of ridership
of New York City Subway is between 2.5 million and
5.5 million, while that of Tokyo Metro is about 6.4 mil-
lion. This means a malware based on this finding can
affect a huge population. Last and the most impor-
tantly, metro-riding traces can be used to further infer
a lot of other private information. For example, if an
attacker can trace a smartphone user for a few days, he
may be able to infer the user’s daily schedule and liv-
ing/working areas and thus seriously threaten her phys-
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ical safety. Another interesting example is that if the
attacker finds Alice and Bob often visit the same sta-
tions at similar non-working times, he may infer that
Bob is dating Alice.
We emphasize that our attack is more effective and

powerful than using GPS or cellular network to trace
metro passengers. The first reason is that metro trains
often run underground, where GPS is disabled. The
second reason is that on most mobile platforms, appli-
cations have to request for user permissions before being
able to access built-in localization components including
both the GPS unit and the cellular localizer. In addi-
tion, while using these components, a particular icon
usually appears on the screen, which will draw the at-
tention of users soon. Therefore, we think that it is not
a good choice to use built-in localization components to
track metro passengers stealthily.

Methodology and Challenges: There exist some
nice dead reckoning mechanisms that exploit the smart-
phone accelerometer to estimate the moving directions
and placements of a car [3] or a walking man [4, 5]. So,
the attacker may also leverage these mechanisms to re-
construct the train trajectory and then map it to the
metro lines on the map to trace the passenger. Never-
theless, compared with walking and other transporta-
tion means, the running of metro trains is much gen-
tler even at turning points, which means that their ac-
celerometer readings are much smaller and more sensi-
tive to even tiny noises. Consequently, the above meth-
ods designed for cars or humans, which require to pre-
cisely extract fine-grained micro information (e.g., turn
angles, displacement) hidden in every few seconds of ac-
clerometer readings, are not suitable for metro trains.
According to our experiment, the predicted trajectory
is far from the real one.
However, although fine-grain micro information is hard

to learn, tens of seconds of accelerometer readings be-
tween between each pair of neighboring stations (called
station interval) must expose some coarse-grained but
easy to extract macro features (e.g., sharp peaks and
valleys, amplitude variances at different directions) due
to the track difference. Our methodology aims to ex-
tract such macro features from the accelerometer read-
ings of every station interval and use machine learning
techniques to learn interval classifiers, which are then
used to detect stations that a specific passenger has
passed. However, this task confronts the following chal-
lenges:
First, the metro readings are hidden in the data corre-

sponding to other scenarios such as motionless, walking
and taking other transportation means. We need an ap-
propriate method to extract metro readings accurately.
Second, the metro features can be easily interfered by
noises due to intentional or unintentional movements of
users. As a result, many station intervals may be falsely

recognized. We need a robust trace inferring method
that can tolerate recognition errors of individual station
intervals. Third, it is too expensive for the attackers to
collect sufficient labeled training data for every station
interval in a large-scale metro system. Namely, we can-
not use supervised learning to learn interval classifiers.

Our Contributions: we make the following specific
contributions in this paper:
(1) We are the first to propose an accelerometer-based

side channel attack for inferring metro-riders’ traces.
Our basic attack consists of two phases. In the train-
ing phase, the attacker collects labeled accelerometer
readings for each station interval and extracts carefully-
selected features to learn a set of interval classifiers. In
the attack phase, malware installed on users’ smart-
phones will automatically read and upload accelerome-
ter readings. The attack first leverages the sharp am-
plitude difference between the data of metro and other
transportation means to precisely extract metro-related
data from miscellaneous accelerometer readings of a vic-
tim. It then segments this data by identifying brief
stops and applies the interval classifiers to map data
segments to station intervals. In this process, we use
ensemble techniques to improve the classification ac-
curacy of individual segments. Moreover, we leverage
the fact that the translated intervals should be contin-
uous to devise a voting-based trace inferring algorithm,
which is able to further tolerate recognition errors of
individual segments due to various noises.
(2) Since collecting labeled training data for each sta-

tion interval in advance is impractical, we propose an
improved attack that only requires the attacker to col-
lect labeled data from a very small set of station inter-
vals with obvious characteristics (e.g., the distance is
much longer than the average, or with obvious turns).
In particular, we devise a semi-supervised learning ap-
proach that is able to learn interval classifiers by com-
bining this limited labeled data with a large amount
of unlabeled data obtained from victims’ phones in the
attack phase.
(3) We conduct real experiments on Nanjing metro

line 2 to evaluate the effectiveness of the proposed at-
tack. We develop an Android application that can read
the accelerometer data. Eight volunteers carry smart-
phones with this application installed when taking the
Metro. Their traces cover 400 station intervals in total.
The results show that the averaging inferring accuracy
can reach about 70% and 90% when a volunteer rides
the train for 4 stations and for 6 stations, respectively.
(4) In order to protect the location privacy of metro

riders, we discuss several possible countermeasures against
the attack we propose.

2. BASIC ATTACK USING SUPERVISED
LEARNING

2



This section presents a basic version of the proposed
side-channel attack for tracing metro riders. This ver-
sion requires the attacker to collect enough amount of
labeled accelerometer data for each station interval (In
this paper, a station interval refers to the track seg-
ment between two adjust stations) during the training
phase, which is obviously impractical for a large-scale
metro system. We will describe how to avoid such

supervised learning in the next section.

2.1 Attack Overview
The proposed attack assumes that an attacker has

infected a large number of users’ smartphones with a
carefully-designed malicious application. This applica-
tion intermittently reads accelerometers and the orien-
tation sensors, which are available on almost all the ma-
jor mobile devices, and uploads the readings to remote
servers through any available wireless networks. Such
malware is not hard to create as both the accelerome-
ters and the orientation sensors can be accessed without
the authorization of users. Internet access needs the
permission of users. Nevertheless, since almost every
application applies for this permission, most users just
grant without any hesitation. Besides the developing,
the malware distribution is also easy to achieve based
on existing social engineering mechanisms. Therefore,
we will not focus on these two tasks in this paper.
The major goal of the proposed attack is to infer

users’ metro-ride traces, i.e., at which stations they get
on and off, based on the metro-related data hidden in
the collected sensor readings. The basic idea behind
this attack is that the track differences among different
station intervals lead to different macro motion charac-
teristics, which may be captured by the motion sensors
(e.g., the accelerometers) of passengers’ smartphones.
As a result, it is possible for the attacker to extract
these characteristics by analyzing the sensor readings
and then utilize classic machine learning algorithms to
identify the passengers’ ride intervals.
As we show in Fig. 1, the proposed attack is composed

of two phases. In the training phases, the attacker col-
lects motion sensor readings for each station interval
and then uses a supervised learning scheme to build an
interval classifier. In the recognition phase, the attacker
analyzes the sensor readings collected by the malware
from infected smartphones and then utilizes the interval
classifier to identify the station intervals that users pass
by. Specifically, this phase contains the follow three key
steps:
(1) Metro-related data extraction: Among the

large amount of data collected by the malware, only
a small proportion of it is corresponding to the metro
riding. Most of it is generated when the users stay still,
walk or take other means of transportation. On account

of this, we need first solve the challenge to filter out
metro-related data from the mixed sensor readings.
(2) Data segmentation and recognition: As sta-

tion intervals are the basic recognition primitives for the
classifier constructed in the training phase, we need fur-
ther segment the metro-related data for each user. Each
data segment is corresponding to one station interval.
We achieve this goal by searching for the stop slots of
trains, in which accelerometer readings are smaller than
other areas. Then, the attacker applies the interval clas-
sifier to map these data segments to station intervals.
(3) Metro-ride trace inferring: Although the pre-

vious step maps the segments data to the specific sta-
tion intervals, the recognition results might be contra-
dictory with each other because of errors. For exam-
ple, two neighboring segments of data are mapped to
non-neighboring intervals. Targeting this problem, we
present a voting based algorithm to infer the complete
metro-ride trace of a user by taking all his segment
recognition results into consideration.

In
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Attacker collects data
Get your sensor data

Train

Sensor data

classifer

Attacker konws your trace

       You take metro 

Extract

Metro-related data

Segment

Recognize individual segments

infer trace

Figure 1: attack model

2.2 Coordinate Transformation
The proposed attack uses the readings of 3-axis ac-

celerometers on smartphones to infer metro passengers’
traces. As we show on Fig. 2, each reading is a three-
dimensional vector [x, y, z] in a screen-based dynamic

coordinate system ( ~X,~Y ,~Z), which rotates as the phone
rotates. So this system varies from phone to phone.
Thereby, it is hard to derive any meaningful motion
patterns of metro trains from raw readings. To solve
this problem, we introduce another static East-Noth-
Up (ENU) coordinate system which is also shown in
Fig. 2. This system does not rotate as the phone ro-
tates. We thereby transform every reading [x, y, z] in
the original phone system to [x′, y′, z′] in ENU system
before performing any analysis.
It is impossible to directly perform this transforma-
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tion due to the lack of the relation between these sys-
tems. We should use the orientation sensor, which is a
virtual sensor based on the magnetometer, to achieve
this goal. The reading of the orientation sensor is also
three-dimensional data [α, β, γ], where α is the angle be-
tween the Y -axis with respect to the horizontal plane,
and β is the angle of the X-axis and the horizontal. γ
is the angle between the horizontal projection of the Y -
axis of the phone system and true north, With these
three angles, it is easy to derive the east, the north and
the up components of the acceleration (i.e. the vector
[x′, y′, z′] in ENU coordinate system). We show the re-
sults in Table 1. The angles γ1, α1, β1, θ are marked in
Fig. 2.

Ynorth

O
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B
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γ
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β1

γ1

Horizontal projection
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X
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θ

β

Ynorth

Xeast

Zup

O

Figure 2: Coordinate decomposition of the sensor

Table 1: Results of coordinate transformation

ECA the east component
of the acceleration

y cosα cos(γ − π) +
x cosβ cos(γ + γ1 − π) +
z cos θ cos(γ + β1 − π)

NCA the north compo-
nent of the acceler-
ation

−y cosα cos(γ − π/2) −
x cosβ cos(γ + γ1 − π/2) −
z cos θ cos(γ + β1 − π/2)

VCA the vertical compo-
nent of the acceler-
ation

x1 sinβ + y1 sinα+ z1 sin θ

2.3 Extraction of metro related data
After the coordinate transformation, the next task

for the attacker is to extract metro-related data from
a large amount of sensor readings collected from vic-
tim smartphones. Among these readings, only a small
fraction are produced when users take the metro. Hem-
minki et al. [6] propose an elegant accelerometer-based
transportation mode detection mechanism on smart-
phone. We may directly apply this proposal to fulfil
our task. However, their goal is to achieve fine-grained
detection of the transportation means for each piece of
accelerometer data, which is much more complex than

ours, i.e., to precisely determine whether a give piece of
accelerometer data corresponds to metro or not. Thus,
we devise a simpler solution for this challenge.
To extract metro-related data, we have to first learn

the distinction between it and the data related to other
transportation means. Fig. 3 presents the sequential
values of the horizontal resultant acceleration (HRA)
when a user changes from metro to walk. Left is the
data generated on the metro, while right is the data
corresponding to walk. We can find that the amplitude
of the walk-related data is significantly larger than that
of the metro-related. Fig. 4 further compares the HRA
curves when the user is on the metro, taxi and bus. We
can still observe a sharp difference that the amplitude of
metro data is much smaller than that of the non-metro
data.
Based on the above observations, we build a naive

bayes classifier based on the HRA charactersitics to
identify metro-related data from mixed sensor readings.
Given a sequence of HRA values of a victim, the at-
tacker classifies each m-sample sliding window. We use
five statistical measures of the HRA values: mean, vari-
ance and the numbers of samples that surpass three
pre-defined thresholds, respectively, as the classifica-
tion features. The classification result is binary: either
metro or non-metro. We move the window m samples
in each sliding. The window size is set to be the half
of the length of the shortest station interval in the tar-
get metro network. The last feature is picked because
we think it can well capture the amplitude difference
between metro and other transportation forms in our
observation.
According to our experiments in Sec. 4.1, this simple

classifier may produce errors, especially the false posi-
tives. However, we observe that it is rare to find two
consecutive widows that are both misclassified. This is
because the length of the classification window is usu-
ally longer than one minute, which is not very short.
It is unlikely for other transportation means to move
the same as a metro train more than two minutes. We
thereby propose the following optimization to further
reduce the errors.
If Wini is classified as non-metro while Wini+1 is

classified as metro, we first continue to classify Wini+2.
If it is attributed to non-metro, we think that Wini+1 is
misclassified. Otherwise, a new sequence of metro data
is considered to begin at some position within Wini. In
this case, we further classify the windows beginning at
Sample (i + 1)w − 1,(i + 1)w − 2,· · · one by one until
meeting the first window that is classified to be non-
metro. Then, if the start position of this window is at
Sample (i + 1)w − k (1 < k ≤ w), the start position of
the new sequence of metro data is considered to be at
Sample (i+1)w−k+w/2. We can use a similar method
to handle the suitation if Wini is metro while Wini+1
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is non-metro. Due to the space limitation, we omit the
detailed description here.
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Figure 3: The horizontal accelerations of walking and
taking the metro

2.4 Segmentation of metro related data
After obtaining the metro-related data, the next step

is to segment it and let each segment correspond to a
station interval. We segment the data because station
intervals are the recognition primitives for the interval
classifier built in the training phase.
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Figure 5: Illustration of stop slots

As we know, metro train has to make a brief stop be-
tween any two station intervals for disembarking and
loading passengers. We thereby try to segment the
metro-related data of a victim by identifying the stop
slots hidden in the data. Fig. 5 shows the HRAs derived
from a piece of metro-related data. We can observe that
there exist a series of periodic slots where the values are
much smaller than those of other positions. According
to our analysis, these slots rightly correspond to the
stop periods of the train. The values in these slots are
smaller because the train is still and has no accelera-
tion in any direction. We design an algorithm shown in
1 to automatically determine the segmenting points by
searching for this kind of stop slots.
Let {X1, X2, · · · , Xn} be a sequence of HRA values

derived from a victim’s metro-related data. The pro-
posed algorithm defines a sliding window W , the length
LW of which is equal to the minimum time of a brief
metro stop. It moves forward W from X1 one value
by one value until reaching a sample Xi that the num-
ber of values below a threshold T1 within WXi

exceeds

95%LW , i.e.,

|
{

k ∈ {i, i+ 1, i+ LW − 1} : Xk < T1

}

| > 95%LW .

Then, we regard Xs (s ∈ i, i+ 1, · · · , i+ win/2− 1)
that minimizes Mean(WXs

) as a potential segmenting
point. Here, Mean(WXs

) is defined to be the mean
value of the points within WXs

. Once we find Xs, the
algorithm directly skips the next T2 values and searches
for the next stop slots from Xs+T2

. Here, T2 equals
the length of the shortest station interval in the target
metro system.

Algorithm 1: FindFinalSegmentPoints

Inputs : A sequence of HRA values of a victim’s
metro-related data, X ;
A threshold for identifying stop slots, T1;
The maximum length of a station interval,

Lmax;
The minimum length of a station interval,

Lmin

Output: Final segmenting points;

1 begin

2 orderedSet =
3 FindSegPoints((X, 0, Length(X), T1));
4 isStop = false;
5 while !isStop do

6 isStop = false;
7 OrderSet tmpSet = ∅;
8 T1 = T1 +∆;
9 for i← 0 to SizeOf(set) do

10 if set[i+ 1]− set[i] > Lmax then

11 isStop = false;
12 tmpSet

⋃

=
13 FindSegPoints((X, set[i]+
14 Lmin, set[i+ 1]− Lmin, T1));

15 set = set
⋃

tmpSet;

16 return set

The above process could help us identify a set of po-
tential segmenting points. However, sometimes due to
selecting an unsuitable T1, it may miss one or several
segmenting points, especially when the sensor data con-
tains many noises (Note that, false segmenting points
can be avoided by making T1 small enough ). To address
this problem, we further check the segmenting points
that we just find. If the distance between neighboring
points goes beyond the maximum length of a station
interval, we know that some segmenting points between
them must have been missed. So, the algorithm slightly
increases T1 and re-searches the stop slots within that
interval. To improve the accuracy, we repeat this step
until the distance between any two adjacent segmenting
points does not exceed the maximum interval distance.
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Figure 4: The horizontal acceleration of traveling by bus, taxi, metro and static, respectively

According to our experiments, this approach may still
produce some errors even after applying the above mea-
sure. So in Section. 2.6 we will give a further solution
to tolerate erros in the trace inferring.

Procedure FindSegPoints

Inputs : X , T1, Lmax, Lmax;
The start and end index of X : sIdx and

eIdx;
Output: A set of potential segmenting points;

1 begin

2 i = 0;
3 OrderedSet retSet = ∅; while i < eIdx− Lmin

do

4 count = |{k ∈WXi
: Xk < T1}|; if

count > 80%LW then

5 Find s ∈ {i, i+ 1, · · · , i+ win/2− 1}
that minimizes Mean(WXs

);
6 retSet =

⋃

= {Xs};
7 i+ = Lmin;

8 else

9 i++;

10 return retSet

2.5 Recognition of the stations
By now we have discussed how to segment the metro-

related data. In this section we will further discuss
how to distinguish among data segments. Our basic

attack requires the attacker to collect sufficient amount
of training data for each station interval (We will intro-
duce how to bypass this limitation in Sec. 3). It then
utilizes the labeled data to lean a classifier model, which
helps translate the data segments returned in the last
step to the station intervals. We now first detail the
feature selection and then introduce the classification
approach.

2.5.1 Feature Selection

The features used for classification can be divided into
two sets.
(1) Statistical Features As we show in Table 2,

this set includes statistical features of the accelerometer
data of the target segment in both time and frequency
domains. Note that we extract these features for all
3 individual components in Table 1, which indicates
that the total number of features in this set reaches
24. These features are able to effectively capture over-
all patterns of the train movement during this interval.
For instance, the STD of the NCA component is use-
ful to characterize the vertical vibration pattern of the
train. Note that before extracting these features, we
first perform the signal smooth that we will describe
soon to filter out random noises due to the movements
of the user hands.
(2) Peak Features Although statistical features can

capture overall patterns of the train movements, they
may miss some local significant events such as big turns
at particular positions, which are usually caused by sig-
nificant changes of the metro track and are ideal features
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Table 2: Statistical features that we used for classifica-
tion

Mean Means of acceleration

Max Maximum of acceleration
STD Standard deviation of acceleration

MAV Mean of the absolute value of acceleration

NVHT1, 2, 3 Number of values higher than threshold1, 2, 3

Length Length of the segment
FFT DC 1-6 Hz Six first FFT components

SE Spectral Entropy

SP Spectrum peak position

for the interval classification. These events usually re-
sult in the sharp peaks and valleys in the accelerometer
data. So, to capture such critical features, we include
the top three peaks and valleys of accelerations on each
axis in NEU system in the feature vector. Nevertheless,
these features are not easy to extract.
First of all, the accelerometers data may include many

noises due to the hand movements of the user. Fig. 6(a)
shows the accelerations on the east axis when a user
shakes his hand holding the smartphone in the station-
ary case. We can find that this shaking may produce
larger peak or valley amplitudes than the movement of
metro trains. We employ a simple smooth technique to
reduce the interference of such noises. Specifically, for
an acceleration sample Xi on a specific axis, this tech-
nique replaces its value with the average of the samples
within a k-sample window around it, i.e.,

X ′

i = Average(Xi−2/k, Xi−2/k+1, · · · , Xi+2/k−1).

We present the accelerations after being smoothed in
Fig. 6(b). We can find that the amplitudes of the new
curve become much more smaller, and their peaks and
valleys can hardly interfere the extraction of desired fea-
tures now. This technique works since the accelerations
due to the hand movement will change from one direc-
tion to the opposite in a short-term, and thus the sum
can cancel each other. The accelerations due to the
train movement, however, may last for a longer time in
one direction, and will not cancel each other.
Second, according to our experiments, we find that

one significant change of the metro track may cause
multiple random peaks or valleys that are extremely
close. As they can only reflect a single feature of the sta-
tion interval, it is better to avoid including all of them
into the feature vector for the classification. Thus, as
shown in Fig.7, we divide a specific acceleration curve
into windows of the same size, find and rank the maxi-
mum (minimum) value in each window, and regard the
three top ranking maximums (minimums) as the desired
peaks (valleys). Nevertheless, if the window size is set
improperly, this approach may still make mistakes. For
instance, the windows in Fig.7 not only miss a desired
peak, but also find a false peak. To further improve
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Figure 6: The effect of smooth

the accuracy, we repeat the above process serval times
with different window sizes, and chooses the three peaks
(valleys) that win the most times as the final outputs.
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Figure 7: Illustration on peak selecting

2.5.2 Classification

After we determine the features, we use them ex-
tracted from the labeled data to train a classifier for
recognizing unknown data segments. Instead of using
only one classification model, we train multiple basic
multi-class classifiers and use the ensemble technique
[7, 8, 9] to combine the classification results with the
aim of creating an improved composite classifier. The
final class prediction is based on the votes of the ba-
sic classifiers. We mainly use two types of classifiers:
boosted Naive Bayesian and decision trees.
To improve the accuracy of Naive Bayesian, we im-

plement its boosted version based on the AdaBoost [9]
algorithm. In AdaBoost, weights are assigned to each
training tuple. A series of k classifiers are iteratively
learned. In each round of leaning, the samples from the
original training set is re-sampled to form a new training
set. The samples with higher weights are selected with
a higher chance. After a new classifierMi is learned, the
samples that are misclassified by Mi are assigned higher
weights, which makes the following classifier Mi+1 pay
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more attention to the misclassified tuples. The final pre-
diction result is returned based on the weighted votes
of the classifiers learned in each round. For the decision
tree technique, we also use its ensemble version, ran-
dom forests [8], to improve the accuracy. In particular,
this technique generates a collection of diverse decision
trees by randomly selecting a subset of the features and
training tuples for learning. During classification, each
tree votes and the final result equally considers all these
votes.
Although we have applied the ensemble technique to

improve the classification, it is impossible to completely
remove errors due to various kinds of noises existing in
the training data. However, the trace of a passenger
usually contains more than one segment, which should
be translated to continuous station intervals. If some of
them are misclassified, the translated results are very
likely to become discontinuous, i.e., cannot form a prac-
tical passenger trace. This enables us to filter out some
classification errors. On the other hand, this property
also indicates that we have the chance to obtain a cor-
rect trace so long as one of the elemental segments is cor-
rectly recognized. In the next subsection, we leverage
this observation to propose a voting-based trace infer-
ring mechanism which can better tolerate classification
errors of individual segments.

2.6 Error-Tolerant Trace Inferring
Assume the metro-related data of a passenger consists

of n segments {S1, S2, · · · , Sn}, and the metro network
contains m station intervals {I1, I2 · · · , In}. Instead of
returning the single winner, we make the classification
mechanism proposed above return a probability matrix
P = [Pi,j ]n×m where Pi,j denotes the probability that
data segment Si is mapped to station interval Ij .
As the inferring result must be a continuous sequence

of station intervals of length n, the inferring domain ℘ is
actually limited. For instance, if we assume that the m
station intervals belong to one metro line, there are only
2 × (m − n + 1) possible results: ℘ = {I1 ⇋ In, I2 ⇋

In+1, · · · , Im−n+1 ⇋ Im}. We can exhaustively con-
sider each of these possibilities, and use a voting-based
approach to determine the final output. In this ap-
proach, the votes that one possibility Pbti: Ii → · · · →
Ii+n−1 obtains equal the sum of the probabilities for
each data segment to be mapped to the corresponding

station interval in Pbti, i.e., V ote(Pbti) =
n
∑

j=1

Pj,i+j−1.

We simply pick the possibility obtaining the highest
votes as the final inferring result. This method can well
tolerate classifying errors of individual segments for two
reasons:
(1) For each data segment, we take into account not

only its optimal mapping but also other possibilities.
Note that the optimal mapping may be incorrect due

to classifying errors.
(2) Our final inferring result comprehensively consid-

ers the classification results of all the member segments
in a trace. The errors of one or a small number individ-
ual segments may not affect the overall predication.
When the metro system is large, we should reduce the

size of ℘ to improve the efficiency of the above process.
For this purpose, we pick three station intervals with the
highest mapping probabilities for every data segment
Si. Then, we only include the possibility Ik−i+1 →
· · · → Ik → · · · Ik+n−i into ℘ for every such interval Ik.
By doing so, the size of ℘ will be greatly reduced.
The accuracy of such kind of inferring heavily relies

on the correctness of data segmenting. If the later is
incorrect, the inferred outcome must be either wrong.
Although we have taken some measures to increase the
segmenting precision in Sec. 2.4, some errors may still
exist as we show in Fig. 4.2. To tolerate such errors,
if the user data is segmented into n segments by the
algorithm, we also consider the conditions of being seg-
mented into n− 1 and n+ 1 segments. Specifically, for
every possibility Ik1

→ · · · → Ikn
in the optimized ℘,

we consider Ik1
→ · · · → Ikn−1

and Ik1
→ · · · → Ikn+1

as well. Note that the time length of a station inter-
val can be estimated based on the map. So, when we
compute the probability of Ik1

→ · · · → Ikn−1
, we can

segment the user data into n− 1 segments based on the
estimated length of each interval.

3. IMPROVED ATTACK USING
SEMI-SUPERVISED LEARNING

The basic attack proposed in the last section requires
the attacker to collect labeled data for each station in-
terval for building an interval classifier. However, in the
real world, there are many cities, such as New York and
Tokyo, which consist of tens of metro lines and hundreds
of station intervals. It is extremely time consuming for
the attacker to traverse every station by metro many
times. In this section, we aim to address this problem
by proposing an improved attack using semi-supervised
learning to significantly reduce the workload of the at-
tacker.
In the improved attack, the attacker is only required

to personally collect sensor data for one or a very small
number of station intervals with obvious features, e.g.
containing big turns, which can guarantee a high recog-
nition rate. It tries to use these intervals as the seeds
to infer unlabeled data belonging to other intervals.
Without loss of generality, we assume that the at-

tacker only collects labeled data for a single station in-
terval, which is denoted by Iseed. The overview of the
proposed semi-supervised learning algorithm is present
in Algorithem 2. It first builds a particular binary clas-
sifier Cseed for Iseed based on the corresponding labeled
data. This classifier uses the same set of features in
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Figure 8: One round of semi-supervised learning

Sec. 2.5 and returns a binary result that whether an
input segment corresponds to Iseed or not. Similar as
the classification method in Sec. 2.5, the classifier here
may be an ensemble combines a series of basic classifiers.
Next, it uses this classifier to check the segmented un-
labeled data collected from victims. If a segment of a
victim’s data sequence is classified as Iseed we can eas-
ily infer the belongings of other segments in the same
sequence. For instance, if S3 in the sample sequence
< S1S2S3S4 > is classified as Iseed, we know that S1,
S2 and S4 are mapped to Iseed−2, Iseed−1 and Iseed+1,
respectively. It then labels these data segments and
adds them to the training sets of the corresponding sta-
tion intervals. After finishing checking a large number
of victims’ data, we may have obtained enough num-
ber of labeled training data for some non-seed station
intervals. So, we can build particular binary classifiers
for these intervals as well. In the next round, we treat
these intervals as new seeds, and use them to classify
the victims’ data segments again. In this round, some
intervals that do not get enough training data in the
last round may get enough data now, and therefore can
be regarded as new seeds.
We repeat the above process until all the station in-

tervals get enough training data. By now, we can turn
back to the basic attack. The difference is that all the
training data except that of the seed interval are pro-
duced by inferring instead of being personally collected
by the attacker. This may reduce the accuracy of the
final trace inferring, but not significantly according to
our experiments.
Note that due to classifying errors, different seed clas-

sifiers may produce contradictory results. For instance,
consider a victim’s data sequence < S1S2S3S4 >. Sup-
pose that in a specific round the attacker has obtained
two seed classifiers Ci and Cj . If Ci recognizes Si as Ii,
Cj recognizes S2 as Ij , but Ii and Ij are not continuous,
we get an conflict. This problem can be solved based

Algorithm 2: Proposed Semi-supervised learning
for labeling user data

Inputs : Lists of unlabeled data segments, SLists;
The seed classifier,Cseed;

Output: Lists of labeled segments, Result

1 begin

2 CSet = {Cseed};
3 while True do

4 LLists = ∅;
5 foreach SL ∈ SLists do

6 IL = Identify(SL, CSet);
7 for i = 0; i < IL.length; i++ do

8 LLists[IL[i]]← SL[i];

9 count = 0;
10 foreach LL ∈ LLists do

11 if LL.length > Threhold then

12 count+ +;
13 C = Training(LL);
14 CSet[C.ID] = C;

15 if count == Total Number of Intervals
then

16 break;

17 return LLists;

on a similar voting-based method as that in Sec. 2.6.
Specifically, the classification result of each seed classi-
fier is regarded as a vote. We finally return the result
receives the highest votes. Here, each vote is weighted
according to the classification confidence.

4. EXPERIMENT
In this section, we introduce our experiments on real

metro for evaluating the feasibility of the proposed at-
tack.
Our experiments are performed on Nanjing metro line

2. Fig. 9 shows the range of the metro line. Eight
volunteers repeatedly travel between two stations by
metro. Each of them carries an Android smartphone
that installs a data-gathering application developed by
us. This application reads the accelerometer and the
orientation sensor every 0.1s, and automatically uploads
the accumulated data to a remote server when WiFi is
available. During experiments, smartphones are held in
hands, and the testers are operating them in usual ways.
The phones that testers used include Samsung S3, S4
and Note2. We finally collect forty data sequences, each
of which corresponds to a trip containing 10 station in-
tervals. So the dataset covers 400 data segments in to-
tal. We then evaluate the effectiveness of the proposed
attack based on this dataset.
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Figure 9: Map of the metro line used in our experiment

4.1 Accuracy of the extraction of metro-related
data

We first evaluate the accuracy of our method for ex-
tracting metro-related data. For this purpose, besides
the metro-related data, we also collect 1.5h data each
for four other transportation means include walking,
bus, taxi and stillness. We divide each of these data
sequences (including 40 metro-related data sequences)
into 100 second-long segments, and then use the clas-
sifier that we introduced in Sec. 2.3 to classify them.
The percentage for each kind of data to be classified as
metro-related is presented on Fig. 10(a). We can find
there will be some errors in the extraction. But when
we use the further optimization that we proposed in the
end of Sec. 2.3, more than 99 % of the metro data is cor-
rectly recognized, and no false positives are produced.
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Figure 10: Accuracy of extracting metro-related data

4.2 Accuracy of segmenting the metro-related
data

We now evaluate the accuracy of our method in Sec.
2.5 to segment the metro-related data. We employ Edit
Distance, which is a popular way of quantifying the dis-
similarity between two strings, to measure the segment-
ing accuracy. Suppose that A = Xj1Xj2 · · ·Xjn is the
real sequence of segmenting points of a victim’s metro
data, while the counterpart produced by Algorithm 1
is B = Xk1

Xk2
· · ·Xkm

. The edit distance ED(A,B)
is defined to be the minimum number of operations re-
quired to transform B into A. Here, different from in
the string scenario, we assume that two nodes, Xjs and
Xkt

, are equal so long as |js − kt| < 10s, where 10s is
half of the minimum stop-time of the trains. We seg-
ment every data sequence in our experimental dataset,
and the CDF of the edit-distance distribution is pre-
sented in Fig. 11. We can find that more than 90%
segment sequence which compared to the real sequence
the error point is less than 2. We thereby should em-
ploy the mechanism propose in the end of Sec. 2.6 to
tolerate these errors in the trace inferring.
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Figure 11: Segmenting accuracy measured by the edit
distances between the segmenting results and the facts

4.3 Accuracy of the basic attack
In this subsection, we evaluate the inferring accu-

racy of the basic attack using supervised learning. As
we mentioned earlier, we totally collect forty groups of
metro-related data, each of which corresponds to a 10-
station-interval trip. In each evaluation, we pick 39 of
40 sequences for training, leaving one for testing. We
do not vary the ratio of training and testing data here
because this attack is just the basic version. In our sub-
sequent evaluation on the improved attack, all these 40
data sequences are regarded as unlabeled testing data.
We first evaluate the classification accuracy of the

naive Bayes classifier. The results are shown in Table. 3.
The cell at row i, column j denotes the percentage for
the data segments corresponding to station interval Ii
to be classified as Ij . We can find that the values at
the diagonal positions are the greatest in most of the
rows, which is a desired feature because these values
equal the accurate recognition rates of station intervals.
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In addition, Table. 3 shows that station intervals I1,
I6 and I7 posses higher recognition rates than others.
By checking these intervals on the map, we find that
this result is reasonable because all these three intervals
expose remarkable characteristics in their tracks that
can significantly improve recognition rates.

Table 3: Mapping probability from individual segments
to station intervals(%)

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10
S1 80 0 5 0 2.5 5 5 0 0 2.5

S2 2.5 40 5 5 10 0 0 22.5 12.5 2.5

S3 2.5 10 47.5 7.5 7.5 5 10 0 7.5 2.5
S4 15 10 7.5 45 0 0 0 10 8 5

S5 5 12.5 2.5 10 37.5 2.5 17.5 5 2.5 5

S6 0 0 5 0 5 80 10 0 0 0

S7 5 2.5 0 0 2.5 12.5 77.5 0 0 0

S8 7.5 32.5 10 2.5 7.5 0 2.5 22.5 12.5 2.5
S9 5 15 2.5 7.5 7.5 2.5 0 15 37.5 7.5

S10 10 22.5 7.5 5 10 5 10 7.5 2.5 20

We then evaluate the performance of our voting-based
inferring mechanism proposed in Sec. 2.6. In each
round of evaluation, we still pick 39 of forty sequences
for training. For the remained one containing 10 seg-
ments, we slip it and generate three sets of subsequences,
whose lengths are 3 (segments), 5 and 7, respectively.
Each sequence in these sets is considered as the metro-
related data of a distinct passenger. We then apply
the voting-based method to infer his trip. The inferring
accuracies for the sequences of different lengths are pre-
sented in Fig. 12. We find that the inferring accuracy
increases with the length of the data sequence, i.e., the
trip length of the passenger. Specifically, when the trip
is composed of 3 station intervals, the average inferring
accuracy is about 80%. When the length is increased
to 7, this value is greater than 94%.

4.4 The accuracy of the improved attack
Finally, we evaluate the inferring accuracy of the im-

proved attack using semi-supervised learning. In our
experiment, we pick I6 and I7 as the seed intervals since
their recognition rates are relatively higher (Please see
Table. 3) thanks to their obvious characteristics. We
mark them by read arrows in fig. 9. We collect addi-
tional 20 pieces of training data for each of them and
then construct classifiers for them separately using su-
pervised learning. In this case, the 40 data sequences
are all unlabeled and regarded as testing data. In ad-
dition, because, in the real world, unlabeled data col-
lected from passengers usually has varied lengthes, we
randomly split these data sequences. Each subsequence
of a random length is considered as one piece of inde-
pendent training data. We then run the mechanism
proposed in Sec. 3 to infer training data for each sta-
tion interval. Once all the station intervals get sufficient
number of training data, we can return to perform the

basic attack against the testing data.
The average inferring accuracies for the data of dif-

ferent lengthes are presented in Fig. 12. We can find
that compared with those in Fig. 12, all the results de-
crease, but not so significantly. The inferring accuracies
for the trips of length 3, 5 and 7 can surpass 59%, 81%
and 88%, respectively.
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Figure 12: Final inferring accuracy on the traces

4.5 Power Consumption
Malware in our attack has to continually access the

accelerometer, which certainly consumes additional power.
We thereby have performed a coarse-grained evaluation
of power consumption of the application we have used in
the above experiments. Note that we do not consider
the power consumed for uploading the recorded data
through WiFi since this operation is performed infre-
quently. As we show in Fig. 13, we compare the power
consumptions when our background application is run-
ning or not on four different smartphones. We consider
both the scenarios that the screen is on and off. Phone
ID 1 to 4 correspond to Samsung S4, Huawei G750,
Samsung S3, MEIZU MX, respectively. We can find
that the increased power consumption per hour (less
than 1.8%) due to the running of this application is
quite limited .
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Figure 13: Power Consumption

In our current malware implementation, it keeps read-
ing the accelerometer every 0.1s once being launched.
We can optimize this design by moving the task of ex-
tracting metro data from the server to the smarphone.
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If it detects that the current accelerometer data does
not correspond to metro, it can sleep for a longer time
(e.g., 5min). It is of small probability for the user to
take metro in the short time if he is not taking metro
now. By doing so, the above energy consumption is
expected to be further reduced.

5. SCHEME OF DEFENSE
Our scheme does not rely on GPS or other positioning

systems, which gives it a high level of concealment and
considerable efficiency. It may disguise itself into nor-
mal smartphone software when it steals the information
on the users’ trace. However, some defensive strategies
can be made to lower the chance of the leakage of infor-
mation on users’ trace.
(1) The smartphones that we currently use does not

inform the user that the application will need the per-
mission to access to the sensors. To prevent the leakage
of the usersa֒ŕ privacy, we let the operating system hint
the user that the application will access to the sensors
and ask for users’ permission. However, this step is
usually neglected by most users.
(2) We may blend some noise into the sensor data in

order to prevent attackers from making use of sensor
data to grab the users’ privacy effectively. If the user
needs the original sensor data without noise, selection
dialog boxes will prompt out to let users permit the use
of non-noise sensor data to some applications. This may
ensure that the privacy of users will not leak by sensor
data.
(3) If malware intends to steal the users’ privacy through

sensor data, constant request for the data from sensors
will evidently boost the power consumption. No matter
how the malware tries to conceal itself, the acquisition of
sensor data will lead to an increasing power comsump-
tion of the smartphone. We may scrutinize the status
of power consumption of programs to examine those
programs that keep consuming too much electricity. In
this way, it is highly possible for us to find malware that
operates background.

6. RELATED WORK
In our work, we dig information from metro-related

sensor data. Actually there are many works in which
usersa֒ŕ private data are stolen through accelerometer.
Liu et al. [10] design a software called uWave. It makes
use of the triaxial accelerometer in a smartphone to rec-
ognize the gestures of the users, which has achieved a
good effect. Wu et al. [11] also do some research on
gesture recognition. So if malicious attackers utilize
those data, they will know what users do. Cai et al.
[12] initial a project in which he reckons the usersa֒ŕ
taps on their smartphones by accelerometers. As taps
on different places of the smartphone screen will bring
different changes to the sensor, given the fixed arrange-

ment of smartphone keyboard, password and other per-
sonal information that users have typed out may be
revealed. Compared with brute-force attack, this ap-
proach is much more effective [2].
Our work infers the metro-related sensor data, there

are also works that involve the data from accelerometer
as a part of the whole database in order to trace the
user. Lee and Mase [13] point out that motor data can
be used to speculate on the users’ traces, but a starting
point needs to be settled first. However, accelerometer
is just one of the sensors that are utilized and this work
is not based on smartphone. Han et al. [14] use ac-
celerometers of smartphone only to deduce users’ trace.
They acquire the users’ tracks by the algorithm they
design, then they match them with a map to infer the
trace of the user, which has inspired us a lot. We imple-
ment their model which called ProbIN. We experiment
on the metro line, but it can not draw the metro line ac-
curately. It can hardly recognize the turns of the metro
line, we can only draw a straight line without turns.
Their experiment is based on driving, As we can see
from Fig. 4, the metro-related data is smooth, so it is
sensitive to noise, it can hardly get detail information
about metro from this method.
Our work involves extracting metro-related data from

a lot of sensor data, which inevitably takes the recogni-
tion of different means of transportation into consider-
ation. The earliest ways to recognize the form of trans-
portation is based on a multi-sensor platform [15, 16].
As smartphones develop, some early systems use em-
bedded accelerometers to read out traveling on foot or
other non-motorized means of transportation, such as
walking [17, 18], running, ascending and descending the
stairs [19] or riding the bicycles [20]. Some of the works
have achieved a good effect on recognizing those means,
whose accuracy is higher than 90%. There are also some
works about detecting stationary and motorised trans-
portation modalities [21, 22]. But the result yielded is
much less effective [6] compared to detecting of non-
motorized transportation modalities. Hemminki et al.
[6] raise an advanced method, which largely improve the
accuracy of the recognition of electrified transportation.
They determine the user takes what kind of transporta-
tion. But in our work, we only need to determine if the
user takes metro or non-metro transportation. So it
is unnecessary for us to use this powerful but sophis-
ticated method to extract metro-related data. In our
work we propose a simple but equally effective algo-
rithm to achieve our goal.

7. CONCLUSION
In this paper, we have proposed a basic attack which

can extract metro-related data from mixed acceleration
readings, then use an interval classier built from su-
pervised learning to infer users’ trace. This attack need
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the attacker to collect labeled training data for each sta-
tion interval, so we further proposed a semi-supervised
learning approach. The improved attack only needs to
collect labeled data for a few station intervals with ob-
vious characteristics.
We conduct real experiment on Nanjing metro line 2.

From the experiment in Sec. 4 we find that the inferring
accuracy can reach 92% if the user takes the metro for
6 stations.
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